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Abstract In the Sleeping Beauty problem, Beauty is woken once if a coin lands

heads or twice if the coin lands tails but promptly forgets each waking on returning

to sleep. Philosophers have divided over whether her waking credence in heads

should be a half or a third. Beauty has centered beliefs about her world and about

her location in that world. When given new information about her location she

should update her worldly beliefs before updating her locative beliefs. When she

conditionalizes in this way, her credence in heads is a half before and after being

told it is Monday. In applications of Dutch Book arguments to the Sleeping Beauty

problem, the probability of a particular outcome has often been confounded with

consequences of that outcome. Heads and tails are equally likely but twice as much

is at stake if the coin falls tails because Beauty is fated to make the same choice

twice. As a consequence, the possibility of tails should be given twice the weight of

the possibility of heads when deciding whether to bet on heads even though heads

and tails are equally likely.

Keywords Sleeping Beauty � Hamilton’s rule � Credence � Relatedness �
Endosperm � Conditionalization � De se beliefs

Elga (2000) introduced the Sleeping Beauty problem as a paradigm for thinking

about centered beliefs. In this puzzle, Beauty is uncertain whether a fair coin landed

heads or tails. If the coin landed heads then she will be woken once. If the coin

landed tails, then she will be woken twice. Beauty is assumed to understand the

procedure but to have all memories of waking erased on returning to sleep. What

should be her waking credence that the coin landed heads? ‘Thirders’ believe the
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answer is one-third because Beauty is woken twice as often after the coin lands tails

as after heads (Elga 2000; Hitchcock 2004; Briggs 2010). ‘Halfers’ believe the

answer is one-half because the coin is equally likely to land heads or tails (Lewis

2001; Arntzenius 2002; Meacham 2008). Halfers and thirders continue to cross

swords at the time of writing.

The purpose of this paper is to offer a resolution of the Sleeping Beauty problem

informed by consideration of a parallel problem in botany that arose in the 1980s in

which some theoreticians adopted a ‘thirder’ stance and others a ‘halfer’ stance.

This problem concerned the genetic constitution of endosperm, a tissue within

seeds. My understanding of the philosophers’ problem was clarified by thinking

about the botanical problem and vice versa. Philosophical disagreement between

halfers and thirders may seem abstruse to empirical scientists and the genetics of

endosperm may seem equally omphaloscopic to philosophers until it is noted that

every grain of rice, wheat, rye, oats, barley, millet, sorghum, and maize is

predominantly endosperm. Most calories in the global human diet come from the

direct consumption of endosperm or its indirect consumption via eating grain-fed

beasts. Epistemology can be practical.

I propose that Sleeping Beauty should update her beliefs about her world before

updating her beliefs about her location in that world and when she does this she

maintains a consistent credence of one half in heads. The next two sections, Eternal

Beauty and Ephemeral Beauty, present the argument which is summarized in Beauty

at Rest. Gambling on Beauty offers an explanation of why arguments based on the

bets Beauty would accept on particular outcomes have often appeared to support the

thirder position. Hamilton’s wager and subsequent sections present the Sleeping

Beauty problem as instantiated within a grain of rice.

Eternal Beauty

Consider an infinite variant of the Sleeping Beauty problem. Eternal Beauty is told

that she will be put to sleep and woken on every Monday for eternity if a fair coin

lands heads but on every Monday and Tuesday for eternity if the coin lands tails. On

waking she will be told neither the day nor the outcome of the coin toss, and she will

forget each and every waking on returning to sleep. Before being put to sleep for the

first time, she understands the protocol and she retains her understanding of the

protocol at each awakening. She believes in three possibilities on waking: the coin

landed heads and this is Monday (H1), the coin landed tails and this is Monday (T1),

or the coin landed tails and this is Tuesday (T2).

Eternal Beauty’s beliefs about her world should be distinguished from her beliefs

about her location in her world. I will call the former her worldly beliefs (P0) and the

latter her locative beliefs (P).1 She believes P0(heads) = P0(tails) = �. If the coin

lands heads, then her world contains H1, P0(H1) = �. If the coin lands tails, then her

1 Locative beliefs are de se beliefs. Worldly beliefs are not otherworldly beliefs. They are Beauty’s

centered beliefs about her actual world and what it might be. If her actual world is conceived as an object

with properties, then worldly beliefs might be considered de re (but I am ill-educated on the philosophical

nuances of these Latin phrases).

24 D. Haig

123



world contains T1 and T2, P0(T1) = P0(T2) = �. P0(T1) and P0(T2) are duplicates of

the probability of her possible world in which the coin landed tails. Eternal Beauty

knows she will wake on Mondays, P0(H1) ? P0(T1) = 1, and believes she has a half

chance of waking on Tuesdays, P0(T2) = �.

How should Eternal Beauty convert beliefs about her world into beliefs about her

location in her world? If she is in a world with T1 wakings then she must also be in a

world with T2 wakings, namely P0(T1|T2) = P0(T2|T1) = 1. However, T1 and T2 are

mutually exclusive when she wakes, P(T1|T2) = P(T2|T1) = 0. She believes her

world contains either H1 or (T1 and T2) but, on waking, she is located in H1 or T1 or

T2. How should she conceptualize this peculiar transformation of (T1 and T2) into

(T1 or T2)?

Halfers believe that waking on Monday is half as likely in possible worlds

created by the coin landing tails as in possible worlds created by the coin landing

heads. Eternal Beauty reasons on waking that either the coin landed heads or the

coin landed tails. If the coin landed heads, with probability P(heads) = �, then it is

Monday (H1), but if the coin landed tails, with probability P(tails) = �, then it is

either Monday (T1) or Tuesday (T2). Since P(T1) = P(T2) by a principle of

indifference, Eternal Beauty’s locative beliefs on waking are P(H1) = �,

P(T1) = �, P(T2) = �.

Thirders believe that Eternal Beauty is woken twice as often in possible worlds

created by the coin landing tails as in possible worlds created by the coin landing

heads. As a corollary, thirders believe that Eternal Beauty is woken on Monday just

as often when the coin lands heads as when the coin lands tails. Because H1, T1, and

T2 occur equally often, she believes P(H1) = P(T1) = P(T2) = 1/3 and, therefore,

P(heads) = 1/3.

For halfers, T1 and T2 collectively have the same locative probability as H1 on

waking but, for thirders, T1 and T2 individually have the same locative probability

as H1. Halfers believe, and thirders probably agree, that the likelihood that a waking

is on Monday in possible worlds in which the coin lands heads is twice the

corresponding likelihood in possible worlds in which the coin lands tails. Thirders

also believe that waking on Monday occurs as often in possible worlds in which the

coin lands heads as in possible worlds in which the coin lands tails. In reasoning

across these possible worlds, halfers use the likelihood of Monday but thirders use

the frequency of Monday.

What if you asked Eternal Beauty about her beliefs? Perhaps she would say that

whether her world was created heads or tails, whether it is Monday or Tuesday, or

whether there are any other days but this day, are metaphysical questions because

there is nothing she can learn to distinguish among the alternatives. She has a

memory that P0(heads) = � from before the procedure—was it yesterday?—but

lives in an eternal present. Why should she have prior beliefs if nothing is at stake?

Possible worlds in which the coin toss was heads or the coin toss was tails are both

infinite sets of indistinguishable days, without past or future, in eternal recurrence. If

she were a number theorist, Beauty might consider the proposition ‘one countable

infinite set has twice as many members as another’ to be meaningless.
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Ephemeral Beauty

Eternal Beauty’s sister, Ephemeral Beauty, is told on Sunday that a fair coin will be

tossed. If it comes up heads she will be woken on Monday, and then made to forget,

but if it comes up tails she will be woken on Monday and Tuesday, and made to

forget after each waking. She will then be woken and debriefed on Wednesday. This

is the original Sleeping Beauty problem. The halfer can simply argue that, when

Ephemeral Beauty is woken on Monday or Tuesday, her beliefs are the same as she

possessed before the procedure. She believes P(heads) = � on Sunday before the

coin was tossed and believes the same on Wednesday before the outcome of the coin

toss is revealed. It would be perverse for her to believe anything different on

Monday or Tuesday. A thirder must argue that Ephemeral Beauty believes tails to

be twice as likely as heads on Monday and Tuesday despite contrary beliefs on

Sunday and Wednesday.

Elga (2000) and Lewis (2001) updated Ephemeral Beauty’s beliefs using

standard conditionalization but different priors. They agreed that P(heads) = P(H1),

that P(T1) = P(T2), and that when she is told it is Monday her credence in heads

should increase because the prior possibility of T2 is eliminated. This led each

to adopt positions they found counterintuitive. Elga (2000) reasoned that

PMon(heads) = � and working backward was forced to conclude that P(heads) = 1/3.

By contrast, Lewis (2001) assumed P(heads) = � and by working forward was forced to

conclude that PMon(heads) = 2/3. Both reasoned that, before being told it is Monday,

Sleeping Beauty believes P(H1) ? P(T1) ? P(T2) = 1 but, after being told it is Monday,

she believes PMon(H1) ? PMon(T1) = 1. The probability formerly attached to T2 was

distributed between H1 and T1. For Elga, Beauty’s centered beliefs changed from

P(H1) = P(T1) = P(T2) = 1/3 to PMon(H1) = PMon(T1) = �, PMon(T2) = 0. For

Lewis, Beauty’s centered beliefs changed from P(H1) = �, P(T1) = �, P(T2) = � to

PMon(H1) = 2/3, PMon(T1) = 1/3, PMon(T2) = 0.

Elga and Lewis conditionalized Ephemeral Beauty’s locative beliefs after

learning it is Monday from her prior locative beliefs before learning it is Monday.

But what if Ephemeral Beauty first updated her worldly beliefs before updating her

locative beliefs? On waking, her worldly beliefs are P0(H1) = P0(T1) = P0(T2) = �
but, on being told it is Monday, she learns her possible worlds for this day do not

include Tuesday, P0
Mon(T2) = 0. Therefore, P0

Mon(H1) = P0
Mon(T1) = � and

PMon(H1) = PMon(T1) = �. The duplicate probability of her worldly beliefs

‘evaporates’ when she is told it is Monday. The locative probability formerly

attached to T2 is transferred to T1. Ephemeral Beauty is a ‘double-halfer’ who

believes both P(heads) = � and PMon(heads) = � (Bostrom 2007; Meacham

2008). The information it is Monday tells her nothing about the coin toss and does

not change her credence in heads.2

2 Lewis (1979) might have said that when Beauty is told it is Monday, she learns something about her

location in ordinary space that changes her location in logical space. Her propositional attitude changes

from ‘week in which heads or tails’ to ‘Monday in which heads or tails.’ ‘Waking on Tuesday’ is a

property of the first propositional attitude that does not have a counterpart in the second propositional

attitude.
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The above procedure differs from standard conditionalization in how it handles

duplicate probability as instantiated in P0(T1) and P0(T2). If new information

eliminates one (but not all) of the duplicates, then her other worldly beliefs are

unaffected: P0(T2) = � conditionalizes to P0
Mon(T2) = 0 but P0(H1) and P0(T1)

remain unchanged. P0(tails) was formerly represented redundantly by P0(T1) and

P0(T2) but is now represented solely by P0
Mon(T2). When worldly beliefs are

converted to locative beliefs, P0(tails) = � is distributed among the uneliminated

duplicates, in this case to the single remaining option P(T1) = �.3

All Beauty learns on being told that it is Monday is that it is not Tuesday. She

learns nothing about the toss of the coin. A simple reframing of her prior beliefs

may make this claim more intuitive: (i) Beauty believes she will be woken on

Monday, P0(Monday) = 1; (ii) Beauty believes she will be woken on Tuesday only

if the coin lands tails, P0(Tuesday|heads) = 0; and (iii) Beauty believes the coin is

fair, P0(heads) = �. When told it is Monday she learns that this is the first time she

has woken but she learns nothing about whether she will wake the next day. That

possibility is still in the future depending on an unknown flip of the coin.

Beauty at Rest

Beauty knows what she believes to be true. At each particular sentient moment,

Beauty has beliefs about her world associated with worldly probabilities (P0) and

beliefs about her location in that world associated with locative probabilities (P).

Worldly and locative probabilities may be primary probabilities, based on things she

knows, or derivative probabilities, based on primary probabilities. On waking,

Beauty knows the coin to be fair and believes that either the coin landed heads or the

coin landed tails. P0(heads) = P0(tails) are her primary worldly probabilities of her

possible worlds.

Beauty also believes that if the coin landed heads then she will wake on Monday

(H1) but if the coin landed tails she will wake on Monday (T1) and Tuesday (T2).

P0(H1) = P0(T1) = P0(T2) = � are her derived worldly probabilities where P0(H1) is

derivative of P0(heads) and P0(T1) and P0(T2) are derivative of P0(tails). P0(T1) and

P0(T2) are duplicate worldly probabilities. If the coin lands tails, both occur in

Beauty’s world. She knows that she wakes on Monday because P0(H1) ?

P0(T1) = 1, but believes she has a half chance of waking on Tuesday, because

P0(T2) = �.

Beauty’s locative beliefs have the same probability as her corresponding worldly

beliefs except for duplicate derived probabilities in which case the primary probability

is divided among the duplicates in locative beliefs. Thus for the non-duplicate

probabilities P0(heads) ? P(heads), P0(tails) ? P(tails), P0(H1) ? P(H1), but for the

duplicate probabilities P0(T1) = P0(T2) = � ? P(T1) = P(T2) = �. Beauty’s

worldly beliefs on waking are P0(H1) = P0(T1) = P0(T2) = � and her locative beliefs

are P(H1) = �, P(T1) = P(T2) = �. When information is provided relevant to her

3 This procedure appears similar to, perhaps is the same as, Meacham’s (2008, p. 249) compartmen-

talized conditionalization.
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locative beliefs, Beauty first updates P0 before updating P. Thus, on being told it is

Monday, Beauty updates her worldly beliefs, eliminating the possibility of Tuesday,

and then uses her new worldly beliefs to update her locative beliefs:

P0
Mon H1ð Þ ¼ 1=2; P0

Mon T1ð Þ ¼ 1=2; P0
Mon T2ð Þ ¼ 0

� �

! PMon H1ð Þ ¼ 1=2; PMon T1ð Þ ¼ 1=2; PMon T2ð Þ ¼ 0f g
P0

Mon headsð Þ ¼ 1=2 ! PMon headsð Þ ¼ 1=2:

Gambling with Beauty

An experimental economist remained unconvinced by such philosophical argu-

ments. From his perspective, Ephemeral Beauty’s beliefs are no less metaphysical

than Eternal Beauty’s beliefs if they have no material consequences. He

commanded the research budget of an economist rather than a philosopher and

proposed that the only way to understand credences is for subjects to have

something at stake. For this purpose, he recruited many beauties to undergo the

Sleeping Beauty procedure or a minor variant thereof. First, he assessed his recruits’

beliefs prior to the procedure. He reasoned that, if the beauties were risk-neutral

gamblers, they would accept bets on heads with payout B for stake C whenever

rB - C[ 0, or C/B\ r, where r was their credence in heads. The economist found

that the beauties accepted bets on heads for C/B\� but rejected bets for C/B[�.

He therefore concluded they believed P(heads) = �.

All beauties were told that, each time they woke, they would be offered a series

of bets on heads with different values of B and C to probe their beliefs about

P(heads). Their stakes would be collected and their winnings paid on Wednesday. If

a coin landed heads, then they would be woken on Monday. If the coin landed tails,

then they would be woken on Monday and Tuesday. At each waking, they would be

told neither the outcome of the coin toss nor the day and their memories of waking

would be erased on returning to sleep.

The beauties were then assigned to one of two groups. OR-beauties were told

that, if the coin landed heads, their bets on Monday would be honored, but, if the

coin landed tails, only their bets on Monday or Tuesday would be honored (with the

choice of Monday or Tuesday determined by an independent toss of the same coin).

AND-beauties were told that all bets would be honored. If the coin landed heads,

their bets on Monday would be honored, but, if the coin landed tails, their bets on

Monday and Tuesday would be honored.

OR-beauties used the same decision rule during the procedure as they used before

the procedure, C/B\�. They continued to believe P(heads) = � on waking. The

entire experimental rigmarole could have been avoided. It changed nothing of

relevance.

AND-beauties, by contrast, adopted the decision rule C/B\ 1/3 during the

procedure. They seemed to believe that P(heads) = 1/3. However, when the

economist came to settle his accounts on Wednesday he realized he had

misunderstood their pecuniary incentives. Heads and tails were equally likely.
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For each accepted wager, he paid B for stake C to all beauties for whom the coin

landed heads and received C from OR-beauties for whom the coin landed tails (as he

had anticipated). However, he received 2C from AND-beauties for whom the coin

landed tails. He had erred when using AND-Beauties’ choices of wagers to assess

their credence in heads because the outcome of the coin toss not only determined

whether they won their bet but also the expected cost of the bet. In deciding whether

to accept a wager on heads, AND-Beauties must take account not only of the

probability of heads but also of the increased cost if the coin lands tails.

OR-beauties and AND-beauties had been offered different wagers on a toss of the

same coin. OR-beauties won or lost bets on heads once. By contrast, AND-beauties

won bets on heads once if the coin landed heads but lost bets on heads twice if the

coin landed tails. They therefore had more to lose by betting on heads. For each

accepted bet, AND-beauties earned (B - C) when the coin fell heads because the

bet was placed once but lost 2C when the coin fell tails because the bet was placed

twice. Bets on heads were better than even money when (B - C)[ 2C which is

equivalent to C/B\ 1/3.

If instead, AND-beauties had bet on tails they would have lost C when the coin

landed heads but earned 2(B - C) when the coin landed tails. Therefore, bets on

tails would be better than even money whenever 2(B - C)[C which is equivalent

to C/B\ 2/3. Thus, AND-beauties employ different decision rules for bets on heads

and tails. Thirders interpret this difference as evidence for unequal credences of

heads and tails and would interpret the right-hand sides of C/B\ 1/3 and C/B\ 2/3

as credences and the left-hand sides as ratios of stakes to payouts. Halfers deny this

interpretation. When an AND-beauty bets on heads, the expected cost is

C* = 1.5C for payout B. Her decision rule C/B\ 1/3 can be written as C*/

B\�. When an AND-beauty bet on tails, the expected cost is C* but the payout is

2B. Her decision rule C/B\ 2/3 can be written as C*/2B\�. In the rearranged

forms, the left-hand sides represent ratios of stakes to payout and the right-hand

sides AND-beauties’ consistent credence in heads.

Elga’s Sleeping Beauty was an AND-beauty. My calculations of which bets she

should accept are not new. They can be found in many analyses that use Dutch

Books and the like to probe her ‘true’ credence in heads. What differs is the

interpretation. Hitchcock (2004) concluded that Beauty’s credence on waking

changed from one-half to one-third because she learned that she was not asleep.

(Does a sleeping Sleeping Beauty have a centered world?) My interpretation is that

Beauty’s credences do not change. She bets according to her beliefs but these beliefs

include an understanding that the stakes depend on the unknown outcome of the

coin toss. This diagnosis is not new. Arntzenius (2002) concluded that Beauty’s

degree of belief in heads should be one-half but that she ‘‘should bet at odds that

differ from her degrees of belief.’’ Bradley and Leitgeb (2006) similarly

distinguished between her credences and fair betting odds. Their analysis parallels

my own: what is at stake depends on the toss of the coin.

OR-beauties and AND-beauties differ not because of different beliefs about the

frequency of heads but because of different beliefs about how often they must pay if

the coin lands tails. Neither OR-beauties nor AND-beauties obtain relevant new

information when woken. Both believe that P(heads) = �. Halfers are vindicated.
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AND-beauties are fated to choose the same on Monday and Tuesday if the coin lands

tails. Therefore, twice as much is at stake if the coin lands tails. As a consequence, H,

T1 and T2 are given equal weight when deciding whether to bet on heads. From the

perspective of an observer of their behavior who cannot ask them to explain their

beliefs, AND-beauties behave ‘as if’ they believed P(heads) = 1/3. Their behavior

can be predicted by this belief. In this limited sense, thirders are vindicated.

Hamilton’s wager

The preceding analysis was stimulated by thinking about a problem from my

doctoral thesis that concerned degrees of relatedness of triploid endosperm (a tissue

within seeds). Philosophers may be interested in the parallels. Unfortunately some

biological background is necessary. I beg my readers’ forbearance.

Inclusive fitness theory was developed to understand fitness trade-offs among kin

(Hamilton 1963, 1964). One of the simplest expressions of this theory is known as

Hamilton’s Rule. This rule-of-thumb predicts the action of natural selection when a

gene’s expression confers a benefit (B) on one individual’s fitness at a cost (C) to

another individual’s fitness. Natural selection favors the genetic action if

rbB - rcC[ 0, where rb and rc are measures of the probabilities that the two

individuals carry a copy of the gene. Hamilton’s Rule can be rewritten as

C=B\rb=rc ð1Þ

The left-hand side of this inequality is a ratio of the fitness consequences of the

action for the two individuals affected and the right-hand side a ratio of their

probabilities of carrying recent replicates of the responsible gene. Strictly speaking,

Hamilton’s Rule is not about particular individuals but about average outcomes of

interactions between specified categories of kin. Thus, the relatednesses can be

considered to represent the relative frequencies with which a genetic lineage has

experienced the costs and benefits of its own action.

Readers will immediately recognize inequality (1) as a restatement of the

gambler’s decision rule. A gene can be considered to be paying a cost C for a chance

of receiving a benefit B. What is uncertain is not whether one class of individuals

pays C and another class receives B, but whether the gene placing the bet is present

in the relevant individuals, with rc the frequency of the gene in the class of

individuals who have paid the cost and rb the frequency of the gene in the class of

individuals who have received the benefit.

Credences of rational actors are revealed by their acceptance and rejection of

wagers. Genes lack beliefs. But the ancestors of present-day genes have passed

repeatedly through a sieve that retained variants that made ‘better’ choices and

discarded those that made ‘worse’ choices. By this process, present-day genes are

expected to behave ‘as if’ they were rational agents who judge the probability of

current events by the past frequency of similar events. Thus, the ‘credences’ of

genetic agents can be inferred from implicit weightings of alternative outcomes in

evolutionary games.
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Embryos and endosperms

The adjectives haploid, diploid, and triploid refer to nuclei containing one, two, or

three copies of each kind of gene. Plants exhibit an alternation of haploid and

diploid generations. Offspring may be haploid or diploid and have both haploid and

diploid parents. Dad and mom will be used as technical terms to refer to haploid

parents and father and mother to refer to diploid parents (Haig 2013). The haploid

products of plant meiosis are called spores. Mothers produce megaspores that divide

to produce moms. Fathers produce microspores that divide to produce dads. All

nuclei of a dad or mom are genetically identical because they are derived from a

single product of meiosis. Moms produce eggs and polar nuclei. Dads produce

sperm. In most flowering plants, each dad produces two sperm and each mom

produces an egg and two polar nuclei. After a process of double fertilization, one of

the sperm nuclei of a dad fertilizes the egg nucleus of a mom to form a zygote that

develops into a diploid embryo and the other sperm nucleus fuses with both polar

nuclei of the mom to form a primary endosperm nucleus that develops into a triploid

endosperm (Fig. 1). A division of labor during seed development results in the

endosperm sacrificing itself for the sake of its twin embryo.

A dad and mom together produce an embryo and endosperm that have identical

maternal and identical paternal genomes. The embryo possesses one copy of the

paternal genome for each copy of the maternal genome but the endosperm possesses

two copies of the maternal genome for each copy of the paternal genome. The

situation of a gene token in endosperm that ‘does not know’ whether it is maternal

(and present in two doses) or paternal (and present in one dose) is analogous to the

situation of an AND-beauty who is uncertain whether she bets twice because a coin

landed tails or once because the coin landed heads.

DadMom

Embryo Endosperm

Fig. 1 A haploid female gametophyte (mom) contributes an egg nucleus to the embryo within a seed and
two polar nuclei to the endosperm. These contributions are represented by filled circles. A haploid male
gametophyte (dad) contributes a sperm nucleus to both the embryo and the endosperm. These
contributions are represented by unfilled circles. What is the ‘probability’ that a gene in the endosperm
comes from dad? From the perspective of an external observer, one-third of the gene tokens in endosperm
come from dad, suggesting an answer of one-third. From the perspective of a gene token in endosperm
looking backward, it either came from dad or from mom, suggesting an answer of one-half
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What credence should a gene in endosperm have about its parental origin? One-

third of randomly chosen tokens from present-day endosperms were inherited from

dad and two-thirds from mom. This synchronic observation suggests that endosperm

genes should behave ‘as if’ they had a one-third chance of coming from dad and a

two-thirds chance of coming from dad. This is a frequentist view of relatedness. A

diachronic perspective suggests a different answer. Any given gene token in

endosperm came from mom or dad with equal likelihood. This is a Bayesian view of

relatedness (Fig. 1).

Each token descends from a ‘parent’ token from which it received one strand of

its double helix. As a token’s lineage is traced back into the past, it passes through

the bodies of moms and dads in roughly equal proportions (Haig 2012). Therefore,

the lineage will have been subject to natural selection half the time as a paternal

token and half the time as a maternal token. Tokens of successful lineages might

therefore be expected to behave ‘as if’ maternal and paternal origin were equally

likely. The present likelihoods, looking forward, are derived from past frequencies,

looking back.

The question how natural selection ‘interprets’ the double dose of maternally-

derived genes in endosperm relative to the single dose of paternally-derived genes

raises similar issues to those debated by halfers and thirders in the Sleeping Beauty

Problem. When an embryo inherits one dose of paternal genes from dad, its

associated endosperm also inherits one dose of the same genes. Should not the

endosperm’s relatedness to dad be the same as the embryo’s relatedness to dad? On

the other hand, an endosperm inherits a double dose of maternal genes from mom

compared to an embryo which inherits a single dose. Should not the greater dilution

of paternal genes in endosperms (one-in-three) relative to embryos (one-in-two)

mean that the endosperm is less related than the embryo to dad?

Three-card Monte

Questions about the relatedness of an endosperm to its own embryo and to other

embryos of the same mother arose in early attempts to apply inclusive fitness theory

to seed development. Westoby and Rice (1982) proposed that ‘‘alleles in an

endosperm are on average three times as likely to reach the next generation through

the embryo with which they are associated as through some other embryo …
Endosperms would not therefore be selected to acquire extra provisions at the

expense of other embryos as strongly as the embryos themselves would be.’’ Queller

(1983) similarly concluded that an endosperm would be less assertive in promoting

the growth of the embryo in its seed relative to embryos in other seeds than would

be the embryo itself. These authors believed an embryo to be less related than its

associated endosperm to embryos in other seeds in the ratio one-half to two-thirds.

The conclusions of these authors were soon challenged by Law and Cannings

(1984) who found that diploidy versus triploidy made no difference to the

assertiveness of endosperm in their population genetic models. This dispute can be

considered an argument between endosperm-thirders and endosperm-halfers. A

resolution of the disagreement was proposed by Queller (1984, 1989). Sometimes
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thirders, sometimes halfers, got the right answer. Who was right depended on details

of gene expression. Queller’s analysis of the endosperm problem informed my

interpretation of the Sleeping Beauty problem.

Consider the relatedness r of an endosperm to its diploid mother and assume that

all her embryos are half-sibs. (Readers who consult the primary literature should be

aware that the papers cited above consider the relatedness of an endosperm to half-

sib embryos rather than diploid mothers. This involves an extra flip of a Mendelian

coin giving r0 = 1/3 as the thirder position and r0 = � as the halfer position.) The

relatedness of an endosperm to its mother corresponds to the probability that a gene

in endosperm is of maternal origin. This is analogous to betting on tails in the

Sleeping Beauty problem. Betting on heads is analogous to the probability of

paternal origin or ‘unrelatedness’ (1 - r). The Sleeping Beauty problem will be

flipped from betting on heads to betting on tails to simplify comparisons. In this

conversion, the thirder contention becomes r = 2/3, analogous to P(tails) = 2/3,

and the halfer contention remains r = �, analogous to P(tails) = �.

Consider a gene expressed in endosperm that causes a cost C to its associated

embryo for a benefit B to its mother when the gene is paternally-derived (single

dose), but causes a cost kC to its associated embryo for a benefit kB to its mother

when the gene is maternally-derived (double dose). Tokens of paternally-derived

genes experience the cost C to its own embryo but do not share in the benefit to the

mother whereas tokens of maternally-derived genes experience both the cost kC and

the benefit kB. Therefore, a gene will profit on average when kB – (1 ? k)C[ 0 or

C

B
\

k

ð1 þ kÞ ð2aÞ

If the effects of the gene are dominant, (2a) simplifies to C/B\� because the same

costs and benefits are experienced whether the gene is of maternal or paternal origin

(k = 1). If, on the other hand, the gene has additive effects (proportional to dosage),

(2a) simplifies to C/B\ 2/3 because the costs and benefits when the gene is

maternally-derived will be 2C and 2B (k = 2). Thus, a gene expressed in endosperm

with dominant effects resembles an OR-beauty in the Sleeping Beauty problem

whereas a gene with additive effects resembles an AND-beauty. Queller (1984,

1989) interpreted the right-hand side of (2a) as the relatedness of endosperm to

mother. Therefore, he concluded that the ‘‘expression-dependent relatedness’’ was

two-thirds for genes with additive effects and one-half for genes with dominant

effects.

If a gene expressed in endosperm has dominant effects, then the extra maternal

dose has no consequences because a single paternal dose has the same effects as a

double maternal dose. By contrast, if the gene has additive effects, then the double

maternal dose has twice the influence of the single paternal dose. For this reason, a

gene engaged in Hamilton’s wager is expected to behave differently depending on

whether it has dominant or additive effects.

One of the attractive features of inequality (1) is that it separates a ratio of

phenotypic effects (C/B) on the left-hand side from a ratio of genotypic probabilities

(rb/rc) on the right-hand side. Inequality (2a) loses this pleasing property because a
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variable that scales costs and benefits (k) appears on the ‘relatedness’ rather than

‘costs and benefits’ side of the ledger. The separation of phenotypic effects from

genotypic probabilities can be restored by algebraic reshuffling

ð1 þ kÞC=2

kB
\

1

2
ð2bÞ

The left-hand side of (2b) is now a ratio of stakes (numerator) to payouts (de-

nominator) and the right-hand side is a relatedness of endosperm to mother that is

not ‘expression-dependent’. Inequalities (2a) and (2b) are algebraically equivalent

but (2b) provides greater conceptual clarity. If the right-hand sides of (2a) and (2b)

are both interpreted as measures of relatedness then relatedness must mean different

things in (2a) and (2b).

If one wishes to interpret evolutionary models in terms of Hamilton’s Rule, then

inequality (1) must take more complex forms as models become more complex. A

theoretician faces an algebraic choice of keeping the left-hand side simple and

putting the extra complexity into ‘relatedness’ or keeping the right-hand side simple

and putting the extra complexity into ‘costs and benefits’. Queller’s (1989) inclusion

of factors weighting phenotypic effects into an ‘expression-dependent relatedness’

is analogous to thirders’ inclusion of factors weighting stakes and payoffs into the

credence of heads in the Sleeping Beauty problem. Queller preserved the simplicity

of ‘costs and benefits’ at the expense of making ‘relatedness’ depend on details of

gene action.

The status of Hamilton’s Rule has recently become a subject of intense dispute

within evolutionary biology with passionate critics and defenders (Allen et al. 2013;

Liao et al. 2015). Models of the evolution of social interactions are inherently

complex. The competing models, if well-formed, should yield similar predictions

regardless of their conceptual framework, albeit in different algebraic form. I

suspect that much of the heat of this debate arises from alternative algebraic

parsings of equations into multivariable ‘chunks’ that are identified with intuitive

concepts such as ‘relatedness’, ‘cost’, and ‘benefit’. How to parse an equation is

often a question of aesthetic preference with alternative arrangements implicitly

defining intuitive concepts in subtly different ways.

Identity by descent and identity by ascent

In the original Sleeping Beauty problem, there was one Beauty and one coin toss

that either fell heads or tails. The toss of a coin was a randomizing device that

rendered outcomes uncertain. In the endosperm problem, every endosperm

simultaneously contains maternal and paternal gene tokens but each solipsistic

token has its own centered world if tokens do not interact. Uncertainty about a

token’s maternal or paternal origin arises not from randomization but from

ignorance. Inclusive fitness theory traditionally assumed that the unpredictable flip

of a meiotic coin and ignorance of parental origin were equivalent sources of doubt

in determining relatedness.
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Consider the relatedness of embryos to their mothers. If one repeatedly sampled

gene tokens from current-day mothers and asked whether identical-by-descent

(IBD) tokens were present in particular embryos, then the proportion of trials in

which the answer was Yes would converge on one-half. This can be considered the

synchronic view of relatedness. A diachronic view is useful for understanding the

action of past natural selection. As a gene token’s lineage is followed back into the

past, it passes through bodies of mothers and fathers in roughly equal proportions

and is repeatedly present in the germline of mothers interacting with embryos. For

each particular embryo, whether IBD tokens were inherited from the mother by the

embryo was determined by a flip of a meiotic coin. As the number of coin flips

increases, the frequency with which embryos inherited IBD tokens from their

mothers should converge on one-half. Thus, from both the synchronic and

diachronic views, randomly selected gene tokens from mothers have probability

one-half of IBD tokens in embryos. For these reasons, the relatedness of embryos to

mothers is considered one-half.

Now consider the relatedness of mothers to embryos. From the synchronic

perspective, half the gene tokens of current-day embryos have identical-by-ascent

(IBA) tokens in their mothers. From the diachronic perspective, a token’s ancestral

lineage will have repeatedly been present in the germline of embryos interacting

with their mothers. On average, the embryonic token will have been inherited from

the mother in half these interactions. Therefore, as the number of such interactions

increases, the frequency with which embryonic tokens interact with IBA tokens in

mothers converges on one-half. From both perspectives, randomly-selected gene

tokens from embryos have probability one-half of IBA tokens in their mothers. For

these reasons, the relatedness of mothers to their embryos has been considered one-

half.

Despite the apparent symmetry of the relatedness of embryos to mothers and

mothers to embryos, IBD and IBA coefficients of relatedness reflect different

sources of uncertainty. The probability of one-half that a maternal gene has IBD

tokens in an embryo reflects uncertainty about a flip of a Mendelian coin. A mother

possesses two alleles at each locus, one inherited from her mother and one inherited

from her father, but only one is transmitted to any particular embryo via the

randomizing process of meiosis. By contrast, the probability of one-half that an

embryonic gene has IBA tokens in its mother reflects ignorance of parental origin. A

randomly chosen gene in an embryo is equally likely to have been inherited from

the embryo’s mother or father because the embryo receives one gene copy from

each.

A general assumption has been that parental origin makes no difference to a

gene’s effects. Each gene’s lineage passes repeatedly through male and female

bodies while its DNA sequence remains unchanged. Therefore, natural selection

should act on genes according to their effects averaged across maternal and paternal

transmission and genes should behave ‘as if’ their parental origin is uncertain.

However, if genes were to acquire an erasable ‘imprint’ on passing through male

bodies that was reset after passing through female bodies, then the one-half

probability that an embryonic gene had IBA tokens in its mother would collapse into

a probability of one for genes of maternal origin and zero for genes of paternal
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origin (Haig 1997, 2000). This would be equivalent to letting Beauty know the

outcome of the coin toss before placing her bets.

Some genes, including genes expressed in endosperm, possess locative memories

of their parental origin (Haig and Westoby 1989). By processes of natural selection,

these imprinted genes should conditionalize their phenotypic effects on parental

origin (Haig 2012). These findings have fundamental consequences for how

coefficients of relatedness should be calculated in inclusive fitness theory.

Organisms no longer possess unified genomes maximizing a unitary fitness but

contain maternal and paternal factions with competing agendas (Haig 1997, 2000,

2006).

Conclusions

Beauty’s paired wakings on tails and the double dose of genes from mom in

endosperm are conceptually similar. The second waking or second dose is a mere

doubling of a single draw from the distribution of a random variable. They are

duplicate probability. It should be evident that doubling, tripling, or quadrupling the

outcome of a single draw does not affect the expected value of the next independent

draw of the random variable nor does it change the value of the single draw that has

already been made. The probability that a gene came from a mother or father in the

previous generation is one-half as is the probability that a toss of a fair coin is heads

no matter how many times the outcomes are repeated.

My analysis has hinged on the conjunctions and and or. This pivot appeared in

the difference between living in a world in which one expects A and B while living

at temporal locations where one experiences A or B. Distinct events that share the

same worldly probability are mutually exclusive in locative space. The pivot

reappeared in thinking about wagers on duplicate experiences. Beauty’s choices

changed when she paid for bets in A and B rather than A or B. The unrecognized

conjunction of these two problems of conjunction, and the failure to disentangle

them, may partly explain why the Sleeping Beauty problem has been so intractible.
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