
functions as an inhibitor of the spindle
assembly checkpoint, called p31comet

[18]. Interestingly, p31comet only binds
to C-Mad2 [19] and can compete with
O-Mad2 for binding to C-Mad2 [17],
indicating that it might inhibit the
spindle assembly checkpoint by
preventing formation of the Mad2
dimer. Yang et al. now described
the crystal structure of p31comet bound
to C-Mad2, the latter again in complex
with the Mad2 binding region of Mad1
[2]. These results are remarkable
for several reasons. The structure
of p31comet is strikingly similar to
the structure of O-Mad2, implying
that p31comet achieves inhibition of
the spindle assembly checkpoint
by molecular mimickry. p31comet may
occupy the O-Mad2 binding site on
the C-Mad2–Mad1 receptor and may
thereby prevent the formation of
C-Mad2–Cdc20 complexes. The
structure further shows that the
interaction between p31comet and Mad2
depends on residues that are only
present in a conformation suitable
for binding in C-Mad2, but not in
O-Mad2, explaining why p31comet can
bind to one and not the other confomer
of Mad2. Finally, Yang et al. [2] show
that p31comet mutants that are
defective in C-Mad2 binding are unable
to inactivate the spindle assembly
checkpoint when expressed in cultured
human cells, supporting the notion
that p31comet functions by associating
with C-Mad2.

These two studies [1,2] are
a landmark on our journey towards
understanding Mad2 function. In the
future, the path of Mad2 research is
likely to bifurcate. One direction will
have to go even deeper into the inner
workings of Mad2 and will need to
address how Cdc20 is actually
recruited to Mad2 and then locked
there inside the C-Mad2 confomer.
Does this process occur via formation
of the postulated I-Mad2 transition
state, and if so, what does this
confomer look like and how is its
formation catalyzed by the C-Mad2–
Mad1 receptor? Answering these
questions will not be an easy task, but
the impressive recent progress made
by the Musacchio and Yu/Luo
laboratories awakens the hope that
addressing these problems may
eventually be feasible. Another
research path will have to gravitate
away from Mad2, presently the holy
grail of the spindle assembly
checkpoint field, and explore the steps

that follow the interaction of Mad2 with
Cdc20. What Mad2 actually does to
prevent Cdc20 from activating APC/C
is not very clear, nor is it clear how
Mad2 interacts with other checkpoint
proteins. In cell extracts, Mad2 is found
in association with at least two other
proteins, BubR1 and Bub3, which are
also needed for the function of the
spindle assembly checkpoint and
which, together with Mad2, assemble
into a mitotic checkpoint complex [20].
How Mad2 functions as part of this
complex is entirely unclear. Answering
these questions will be an exiting task
for the future.
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Huddling: Brown Fat, Genomic
Imprinting and the Warm Inner Glow

Heat generated by huddling animals is a public good with a private cost and
thus vulnerable to exploitation, as illustrated by recent work on rabbits and
penguins. Effects of imprinted genes on brown adipose tissue suggest that
non-shivering thermogenesis is an arena for intragenomic conflict.
David Haig

‘‘if two lie together, then they have
heat; but how can one be warm
alone?’’ (Ecclesiastes 4:11)
Huddling is a widespread
cooperative behavior of inactive
homeotherm animals. In cold
environments, huddling reduces
individual heat loss by minimizing
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the exposed surface area. Moreover,
animals that congregate in an
enclosed space can raise the ambient
temperature more effectively than a
single individual, thus reducing
each individual’s heat loss per unit
of exposed surface. Energy saving
through huddling may be substantial.
For example, 45 large brown bats
(Eptesicus fuscus) huddled in
a tree cavity expend less than half
the energy as they would, were
each of them roosting alone [1].

Within a huddle, the fuel consumed
by thermogenesis is a direct personal
cost to each individual while the
benefits are shared by all. Social
thermoregulation is, therefore, in
principle vulnerable to exploitation
by free-riders who skimp on their
share of the heating bill. A recent
study of emperor penguins reveals
the interplay of cooperation and
conflict during huddling [2]. Another
study by the same group quantifies
the benefits of huddling in litters of
rabbits [3].

Paternal Endurance and Sib Conclaves
Male emperor penguins endure a
four-month fast through the
Antarctic winter. During this fast, males
live off their fat reserves, incubate
a single egg and subsequently feed
the newly hatched chick. Males huddle
in large groups, especially in bad
weather. This allows them to reduce
heating costs while maintaining high
incubation temperatures. Huddling is
essential for successful reproduction
because males have insufficient
reserves to survive winter on their
own [2,4]. Gilbert and colleagues [2]
monitored core and subcutaneous
body temperatures of five male
emperor penguins during their winter
fast. Fortuitously (for the researchers),
one male lost his egg during a blizzard
after 20 days of incubation. The four
males who retained their eggs
maintained high core temperatures
while huddling (36.9 6 0.3�C). The
fifth male, however, reduced his core
temperature while huddling (35.5 6
0.4�C; range 32.8–37.4�C), thereby
effectively turning into a net recipient
of heat from his warmer neighbors.
A plausible interpretation of this
observation is that the loss of his
egg shifted the marginal costs and
benefits of thermogenesis. Once
freed from the constraint of
providing heat to a developing chick,
the male was able to exploit the heat
production of other males who still
incubated eggs.

Huddling is particularly important for
young birds and mammals with high
surface area to volume ratios. Huddling
behavior has been extensively studied
in rat litters [5,6]. Rat pups snuggle
closer together at colder temperatures,
causing the aggregate surface area of a
huddle to expand as temperature rises
and contract as temperature falls.
During contraction, outer pups attempt
to wriggle into the center, whereby
individual pups circulate between the
surface and center of the pile. When
thermogenesis was pharmacologically
inhibited in one or more pups, huddles
were stable at 15�C if all of the pups or
none of the pups were treated, whereas
mixed huddles disintegrated [7].

Rabbit mothers, unlike rat
dams, suckle their pups once
a day for 3–5 minutes, but do not
otherwise interact with their offspring.
Pups huddle in the absence of their
mother and raise their body
temperature shortly before her
predicted return. Gilbert and
colleagues [3] exploited these unusual
features of maternal care to assess
the benefits of huddling. Rabbit pups
were kept at 23–24�C in groups of one,
two, four or eight but were returned
to their original litters for suckling. In
comparison to pups raised alone,
pups from groups of eight used 40%
less energy between days 3 and 5 and
accumulated more fat by day 12.
Pups reared alone failed to raise their
body temperature before their mother’s
return and consumed less milk during
her brief visits. Thus, energetic
savings from huddling were converted
into greater access to maternal
resources.

Huddling with Relatives
Pups help to reduce each other’s
heating costs but are also competitors
for milk. The evolutionary balance
between these two forces will be
determined, in part, by the extent
of relatedness among huddle-mates.
Consider the fate of a hypothetical,
newly arisen — and thus rare — allele
that reduces thermogenesis in
a population in which most individuals
contribute to social heating. If huddles
consisted of non-relatives, then
carriers of the rare allele would be the
only members of their huddle to reduce
thermogenesis. In this case, a carrier
would reduce his own costs of
thermogenesis while continuing to
receive heat from the rest of the group.
If, on the other hand, huddles consisted
of full-sibs, then an allele carrier would
reduce his heating costs but would also
lose heat contributions from half the
other members of the huddle who carry
a copy of the same allele. Therefore,
all other things being equal, alleles for
free-loading are more likely to invade
a population, and spread to fixation,
if huddles consist of non-relatives.

Degrees of relatedness can vary
among individuals within huddles.
In this case, individuals of lower
than average relatedness would be
expected to exploit the thermogenesis
of individuals of higher than average
relatedness. Alpine marmots, for
instance, hibernate in groups of up to
20 individuals. When the huddle
contains juveniles, winter weight loss
increases for older sibs of the litter but
decreases for less-related individuals
[8]. This suggests that older sibs
increase thermogenesis to enhance the
survival of juveniles, and less-related
individuals benefit by reducing their
own heat production.

..

..
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Figure 1. Social heating and genomic
imprinting.

Huddling mouse pups from a litter with one
mother and multiple fathers. Blue dots repre-
sent offspring that have inherited one of the
two alleles present in their mother. The red
dot represents a paternal allele inherited
from one of the fathers. For any particular
offspring, its maternal allele is present, on av-
erage, in half the other members of the litter
but its paternal allele is present in a minority
of littermates. Consider a rare allele that
reduces thermogenesis: If this is the blue
maternal allele, each offspring with the allele
will lose heat contributions from three litter-
mates. If this is the red paternal allele, its
carrier would continue to be warmed by the
other members of the litter. Therefore, mater-
nal alleles are predicted to favor higher levels
of thermogenesis than paternal alleles.
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Of particular interest, degrees of
relatedness within a huddle may differ
for genes of maternal and paternal
origin. For example, in a multiple-
paternity litter, more individuals will
share genes of maternal origin than will
share genes of paternal origin.
Therefore, maternally expressed
imprinted genes are predicted to
promote higher contributions to
communal heating than the level
favored by paternally expressed
imprinted genes (Figure 1) [9].

Brown Fat and Genomic Imprinting
Young mammals generate heat by
non-shivering thermogenesis in
brown adipocytes [10]. At least three
imprinted loci influence this process in
mice. Two paternally expressed loci,
Pref1/Dlk1 and Necdin [11,12], reduce
the size of the ‘furnace’ by inhibiting
differentiation of preadipocytes into
brown adipocytes [13]. The third
imprinted locus, GNAS, encodes the
G-protein a stimulatory subunit (Gas)
that initiates the cellular events that
activate thermogenesis downstream
of b-adrenergic receptors [10]. Both
maternally and paternally derived
GNAS alleles produce Gas in most
tissues, but in brown adipose tissue the
maternally derived allele is expressed
preferentially [14]. By contrast, the
paternally derived GNAS allele
produces the XLas protein, which
antagonizes the effects of Gas in
brown adipose tissue [15]. Thus,
GNAS produces both a maternally
expressed promoter and a paternally
expressed inhibitor of non-shivering
thermogenesis. This is the pattern
that would be predicted if
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In 1975 Art Riggs and Robin Holliday
independently predicted the existence
of DNA methyltransferases that would
matrilineal relatedness exceeds
patrilineal relatedness within huddles.
Future studies will test whether this
pattern is maintained at other imprinted
loci.

The evolution of cooperation has
been a major area of theoretical and
empirical research in evolutionary
biology, but with a perceived need
to exploit new study systems for
testing theoretical models [16].
Social thermogenesis has certain
advantages for studying the stability
and breakdown of cooperation.
Huddles are spatially localized, and
fitness-related variables, such as
temperature, body weight or milk
consumption, are easily measured.
Moreover, pharmacological and
genetic interventions are available
to adjust how much particular
individuals contribute to the
collective good.
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inheritance, and Groudine and
colleagues [4] showed that this
inheritance was stable for at least 80
cell doublings in a system that
controlled for copy number and
integration site effects. Eric Richards
and colleagues showed remarkably
stable mitotic and meiotic inheritance
of CpG methylation patterns in
Arabidopsis thaliana [5]. Faithful
maintenance of methylation patterns
is essential for the survival of
differentiated cells and may be
involved in diseases in which
the perpetuation of aberrant
DNA-methylation patterns may
contribute to disorders of imprinted
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