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Living together and living apart:
the sexual lives of bryophytes

David Haig

Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge,
MA 02138, USA

Haploid gametophytes of bryophytes spread by clonal growth but mate

locally, within an area defined by the range of sperm movement. Rarity of

establishment from spores or vegetative competition can result in unisexual

populations unable to reproduce sexually. Females typically outcompete

males, probably because females expend fewer resources than males on the

production of gametes. Extreme sexual dimorphism—tiny males growing

as epiphytes on much larger females—has evolved many times. Haploid

selfing is common in bryophytes with bisexual gametophytes, and results

in completely homozygous sporophytes. Spores from these sporophytes

recapitulate the genotype of their single haploid parent. This process can be

considered analogous to ‘asexual’ reproduction with ‘sexual’ reproduction

occurring after rare outcrossing between haploid parents. Ferns also produce

bisexual haploid gametophytes but, unlike bryophytes, haploid outcrossing

predominates over haploid selfing. This difference is probably related to

clonal growth and vegetative competition occurring in the haploid but not

the diploid phase in bryophytes, but the reverse in ferns. Ferns are thereby

subject to stronger inbreeding depression than bryophytes.

This article is part of the themed issue ‘Weird sex: the underappreciated

diversity of sexual reproduction’.
1. Sexual lives of bryophytes
Animal life histories are characterized by multicellular diploid individuals that

produce haploid gametes by meiosis. Gametes are the only haploid cells of such

life cycles. The life histories of bryophytes (mosses, liverworts and hornworts)

are fundamentally different. Multicellular haploid gametophytes (gamete-

producing plants) produce gametes by mitosis. The fertilization of an ovum

by a sperm produces a zygote that develops into a short-lived multicellular

diploid sporophyte (spore-producing plant) that grows attached to the maternal

gametophyte on which it depends for nutrients. Sporophytes produce haploid

spores by meiosis that germinate to produce new gametophytes (figure 1).

Mating is restricted to the distance over which sperm can find ova, usually in

the millimetre to centimetre range [1]. Clonal expansion occurs via vegetative

spread of gametophytes into neighbouring space and production of gemmae

(asexual propagules) that disperse gametophytic clones to new sites [2].

Gametophytes of dioecious bryophytes are unisexual, producing either eggs

or sperm, but not both. Males and females compete for space but require close

proximity for sexual reproduction. By contrast, gametophytes of monoecious
bryophytes are bisexual, able to produce both eggs and sperm. A bisexual

gametophyte that fertilizes its own eggs engenders homozygous sporophytes

all of whose spores are genetically identical (excepting meiotic errors and post-

zygotic mutations). Roughly 70% of liverworts, 60% of mosses and 40% of

hornworts are dioecious [3]. Bryophyte life cycles are not only fascinating in

themselves, but also provide us a mirror for viewing better-known systems

from a different angle. Among other topics, this paper explores the question

when are males and females sexual collaborators who tolerate each other’s pres-

ence and when are they asexual competitors who exclude each other from

contested space?

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2015.0535&domain=pdf&date_stamp=2016-09-12
http://dx.doi.org/10.1098/rstb/371/1706
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Figure 1. Life cycles of mosses, liverworts and hornworts possess multicellular
haploid gametophytes that produce gametes by mitosis. Fertilization of an ovum
by a sperm produces a multicellular diploid sporophyte that develops while
attached to, and nutritionally dependent upon, its haploid mother (attachment
is represented by shaded rectangle). Sporophytes produce haploid spores by
meiosis. Spores germinate after dispersal to form the next generation of gam-
etophytes. In species with chromosomal sex determination, male gametophytes
possess an M chromosome and female gametophytes possess an F chromosome.
In these species, sporophytes are obligate FM heterozygotes.
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(a) Sex determination
The sex of unisexual gametophytes is determined by the seg-

regation of sex chromosomes at meiosis, or at least, it is in

the few species in which the question has been investigated.

Such chromosomes have traditionally been called X and Y

but I use F (for female) and M (for male) to distinguish

them from chromosomes that determine sex in the diploid

phase. In the F/M system of haploid sex determination, all

sporophytes are FM heterozygotes, and each meiotic tetrad

contains two F-bearing spores that develop into female gam-

etophytes and two M-bearing spores that develop into male

gametophytes (figure 1). As a corollary, the sex ratio is

balanced at the completion of meiosis.

Heteromorphic sex chromosomes have been reported in

several dioecious liverworts [4,5] but in relatively few dioe-

cious mosses [6]. For most dioecious mosses, genetic sex

determination is an assumption awaiting evidence. In recent

years, molecular markers that segregate with sex have been

identified in a few dioecious mosses [7,8]. The M chromosome

of the liverwort Marchantia polymorpha has been sequenced,

and the F chromosome partially sequenced [9,10]. These M

and F chromosomes comprise, respectively, about 4% and

8% of the base pairs of a haploid genome [11]. In the moss

Ceratodon purpureus, 35% of anonymous loci were sex-linked,

consistent with the cytogenetically determined size of sex

chromosomes in this species [12].

Gametophytes of most liverworts possess 8–10 chromoso-

mes [13] and are unisexual [14,15]. The bisexual gametophytes

of some monoecious liverworts possess 16 or more chromo-

somes and are therefore considered to be diploid

descendants of haploid dioecious ancestors [16,17]. A similar

association of monoecy with polyploidy occurs in mosses:

some monoecious species have twice as many chromosomes

as related dioecious species [18,19], and monoecious species,

on average, have higher chromosome numbers than dioecious

species [20]. The association of monoecy with polyploidy

suggests diploid bisexual gametophytes originated from unre-

duced spores of FM diploid sporophytes of dioecious species

and thus possessed all the genes necessary for both male (M)

and female (F) sexual functions. Despite this attractive scen-

ario, some bisexual gametophytes are haploid, and some

unisexual gametophytes are polyploid [17,21,22]. Sex chromo-

somes have been reported from dioecious hornworts [23], but
most hornworts are monoecious [24]. Monoecious and dioe-

cious hornworts have similar chromosome numbers [3].

Therefore, changes in ploidy do not appear to have been a

major factor in changes of sexual systems in hornworts.
2. Sessile sex
Sexual reproduction is rare for many dioecious mosses but

common for most monoecious mosses [25]. For example,

sporophytes are rare, very rare, or unknown for 262 of 380

(69%) dioecious moss species in the British moss flora but

for only 22 of 260 (8%) monoecious moss species. These num-

bers include 108 dioecious species (41%) and eight

monoecious species (3%) for which sporophytes are

unknown in Britain, including species in which sporophytes

have never been observed anywhere [26]. The rarity of sexual

reproduction for many dioecious bryophytes appears to be a

consequence of mature male and female gametophytes rarely

growing together within the range of sperm movement.

Spatial isolation of the sexes could be explained by rarity of

establishment from spores, such that most local populations

are established from a single spore, together with minimal

subsequent intermingling of the sexes via asexual reproduc-

tion. Spatial isolation of the sexes could also be explained by

competitive exclusion of one sex by the other within local

populations. The most likely timing of competition would be

during local establishment from spores, or gemmae, before

the appearance of macroscopically visible plants. Competition

could also be expressed in the inability of newly arrived spores

or gemmae to become established in a macroscopic patch of the

opposite sex. Rare establishment or intersexual competitive

interactions are not mutually exclusive explanations of sexual

isolation. If sexual reproduction is uncommon because of inter-

sexual competition, then mixed-sex populations become less

likely because of the rarity of spores. This paper focuses on

the hypothetical effects of intersexual competition.

Vegetative competition among haploid clones, combined

with short-range fertilization, means that local mating popu-

lations will often be small and that unisexual gametophytes

will sometimes have no individuals of the opposite sex

within the range of sperm movement. Even if local populations

contain more than one clone, sometimes all clones will be one

sex. The frequency of single-sex populations will increase as the

number of clones in the local population decreases and as

the sex ratio, in the general population from which the local

population is recruited, deviates further from an equal balance

of the sexes. The size of local mating populations will be deter-

mined, in part, by the growth habits of clones and their

tendency to exclude other clones or to intermingle. Polytrich-

aceous mosses that exclude other species also exclude the

other sex of their own species from their clumps [27].

If males and females occupy the same niche and undergo

prolonged clonal growth without sexual reproduction, then

whichever sex is the superior competitor would be expected

to exclude the other sex from their shared habitat [28]. Sexual

reproduction facilitates coexistence, because it resets the sex

ratio among spores to equality, thus disproportionately bene-

fitting the less competitive sex. When long-term clonal

persistence is not an option, the sexes depend on each other

for spore production. Thus, the relative importance of asexual

and sexual reproduction will be a key determinant of inter-

sexual relations. Long periods of sexual abstinence favour the
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vegetatively competitive sex, but frequent sexual liaisons

favour coexistence of the sexes, even sexual cohabitation.

Although each sex requires the other for reproduction via

spores, this mutual dependence does not eliminate intersexual

conflict. The genetic diversity of a gametophyte’s sexual pro-

geny is greater the larger the number of the opposite sex in

the local mating population, but the gametophyte’s expected

fitness is greater the smaller the number of the same sex.

In other words, gametophytes benefit from the company of

multiple members of the other sex, but from being the

only representative of their own sex. The absence of sexual

competition between individuals of opposite sex does not

necessarily translate into reduced vegetative competition

between the sexes. Sex-specific attenuation of competition

requires that other individuals be distinguishable by sex, but

tolerance of the opposite sex could create evolutionary incen-

tives for gametophytes to dissemble their sex when at a

competitive disadvantage.
 1:20150535
(a) Female advantage
Female-only populations of bryophytes outnumber male-only

populations [29] and archegoniate (egg-producing) shoots

often outnumber antheridiate (sperm-producing) shoots in

mixed-sex populations [30]. The observed excess of female-

only populations could result from a female bias in the sex

ratio among spores, lower survival of male clones founded

from a single spore or gemma, greater production of gemmae

by females, or competitive exclusion of males by females

when the sexes grow together [31,32]. The archegoniate bias

could be explained, in principle, by fewer male shoots than

female shoots producing gametangia [33]. However, an

excess of female shoots generally persists when sex can be

assigned to sterile shoots [34–38].

If sex is determined by the segregation of F and M chromo-

somes, or the segregation of male-specific and female-specific

alleles at a sex-determining locus, then the sex ratio among

spores should be 1 : 1 and observed biases would be post-

meiotic in origin (although possibly influenced by different

germinability of male and female spores). Genetic sex deter-

mination has been reported in several dioecious bryophytes

[4–12], but information on more species would be desirable.

I will assume as a working hypothesis, until contrary evidence

becomes available, that there are equal numbers of male and

female spores immediately after meiosis.

The best-supported hypothesis for explaining female biases

in bryophytes is that females grow faster than males, because

males invest more in unsuccessful sexual reproduction

[33,39]. Females invest in sexual progeny via expenditures on

archegonia before fertilization and sporophytes after fertiliza-

tion. The cost of producing a few archegonia, in case sperm

are present, is cheap compared with the cost of producing

enough sperm to search the local area for archegonia that

may or may not be present. Therefore, females can reinvest

photosynthate in growth until an archegonium is fertilized,

enjoying the advantages of compound interest, and then

switch to investment in a costly sporophyte. By contrast,

males invest in antheridia without a guarantee that an archego-

nium will be fertilized. Sperm that fail to find archegonia are

sunk costs.

Female biases are predicted to decrease with the frequency

of sexual reproduction, because sporophytes are provisioned

exclusively by females. Indeed, in the clonal moss Hylocomium
splendens, females without sporophytes grow faster than males

but females with sporophytes grow slower than males [40].

Stronger female biases are associated with fewer sporophytes,

both in a phylogenetic comparison between two families

of wetland mosses [41] and in a comparison between coastal

and epiphytic populations of the liverwort Frullania tamarisci
[42]. Sporophytes, of course, are necessarily absent in

populations that lack males.

An additional factor that could contribute to a female

advantage will briefly be mentioned. Chloroplasts and mito-

chondria of bryophytes are inherited via eggs but not sperm

[12,43]. Strict maternal inheritance would mean that the evo-

lutionary lineage of an organellar gene in dioecious taxa has

spent all previous generations in female gametophytes and

encounters each male gametophyte as an evolutionarily

novel environment. Therefore, organellar genomes will have

evolved to maximize female fitness without regard for effects

on male fitness. This asymmetry might contribute to a

growth advantage of female over male gametophytes, but

the evolutionary lineages of nuclear genes will have repeat-

edly encountered organelles in gametophytes of both sexes,

and will have been strongly selected to exploit organelles in

male gametophytes.

The preponderance of archegoniate gametophytes in dioe-

cious bryophytes contrasts with a preponderance of staminate

sporophytes in dioecious angiosperms (with interesting excep-

tions) [44,45]. A factor that may contribute to female biases

being more common in bryophytes than in angiosperms is

that pollen can be transferred to ovules over much greater dis-

tances than sperm can be transferred to archegonia. Therefore,

male angiosperms need not invest extensively in asexual repro-

duction as a form of mate search, and female angiosperms will

more frequently experience the postzygotic costs of seed and

fruit production.
(b) Sex, why bother?
Relative allocation to asexual and sexual reproduction should

evolve to match the historical rates of return on investment.

More should be invested in asexual reproduction when fewer

opportunities exist for sexual reproduction, because marginal

returns from investment in antheridia decline when fewer

sperm fertilize archegonia and marginal returns from invest-

ment in archegonia decline when fewer are fertilized. This

evolutionary dynamic has the potential for positive feedback.

Less sex favours less investment in gametangia that favours

further declines in the frequency of sex. If returns from sexual

investment are sufficiently low relative to returns from clonal

expansion, lineages that dispense altogether with sexual invest-

ment may have higher clonal fitness than lineages that retain

sexual function.

An evolutionary tension exists between sexual and asexual

reproduction in dioecious bryophytes. Some haploid genets

may live for hundreds, perhaps thousands, of years. During

clonal growth, natural selection is inoperative against muta-

tions that impair strictly sexual functions and may even

favour such mutations if resources can be reallocated from

gametangia and sporophytes to vegetative growth and asexual

propagules. For both these reasons, mutations that degrade

sexual functions will accumulate in long-lived clones [46,47].

Successful reproduction via spores, on the other hand, is only

possible for subclones that retain sexual functions. Thus, gam-

etophytic populations are expected to contain older clones
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comprising subclones, some of which are no longer sexually

competent, and younger genets that are sexually competent.

If sexual reproduction is sufficiently rare, then sexual compe-

tence may be lost from the population by a combination of

drift and selection for vegetatively vigorous subclones.

Female gametophytes pay the full cost of sporophytes

even though only one spore in two inherits any particular

female-derived gene. By contrast, every asexual propagule

inherits the female’s entire genome. Thus, investment in

asexual propagules yields twice the return of an equivalent

investment in spores, other things being equal. For this

reason, natural selection will tend to favour functions of

dispersal and perennation being performed by asexual pro-

pagules rather than by spores. Investment in archegonia

and sporophytes should be reserved for those functions that

depend on the unique attribute of spores as the genetically

variable products of sexual reproduction.

A bisexual gametophyte always has itself as a potential

mate. Gametophytic selfing produces sporophytes, all of

whose spores are genetically identical to each other and to

the subtending bisexual gametophyte. These spores are not

subject to twofold dilution with alleles of another gametophyte

and may evolve functions performed by asexual propagules in

dioecious species. Gametophytic selfing is, in effect, a form of

asexual propagation, but one that requires the maintenance of

the genetic machinery of antheridia, archegonia and sporo-

phytes. Monoecious species are therefore less subject than

dioecious species to mutational meltdown of sexual functions.
3. Intersexual relations
Intersexual relations undoubtedly vary among bryophytes.

Many gametophytes occur in single-sex populations. Mating

systems have not been studied in species with strong female

biases and rare sporophytes. Perhaps females in these species

can be conceptualized as ‘black widows’ that spend long

periods without partners, produce sporophytes with males

when they meet, then promptly eliminate their mate to wait

and grow, until their next brief sexual encounter. For other

dioecious species with abundant sporophytes, males and

females grow intertwined [48] or males grow as minute

dwarfs on female leaves (see §3b). Sporophytes are also abun-

dant in monoecious species in which bisexual gametophytes

mate with themselves.

(a) Promiscuity and fidelity
Two studies of dioecious peat mosses suggest a range of pos-

sible mating systems. A population of Sphagnum lescurii from

North Carolina, USA, contained many different male and

female genotypes. The sporophytes on a single female shoot

had, on average, four different haploid fathers [49]. This

suggests a promiscuous mating system. By contrast, all

sampled shoots of Sphagnum fuscum from a large bog (Fugl-

myra) in Norway were assigned to one of two major

haplogroups interpreted as two clones. Both clones occurred

on transects 250 m apart and both were detected in 50 year

old peat, with one detected in 450 year old peat [50,51]. Abun-

dant sporophytes at Fuglmyra suggest that the clones are of

opposite sex. These clones are intermingled over many

metres and have coexisted for at least 50 years, perhaps much

longer, without one competitively excluding the other within

the mire. Under this interpretation, Sphagnum fuscum at
Fuglmyra consists of a monogamous couple in a long-term

sexual relationship. Because Sphagnum fuscum creates and

maintains its own hummock habitat [52], the bog at Fuglmyra

could be considered the extended phenotype of a ‘diploid’

pair of haploid gametophytes producing trillions of spores

over hundred of years for the chance that a few lucky spores

establish new bogs.
(b) Dwarf males
Tiny males grow epiphytically on much larger females in

many moss species [53,54]. Males are sometimes reduced to

no more than a few leaves sheathing a single antheridium

[55]. Male dwarfs are facultative in some species but obligate

in others. In one survey, dwarf males were detected in 72 out

of 162 (44%) dioecious mosses, with full-sized males

unknown in 18 of these species [54]. Male dwarfism appears

to have evolved many times independently [54,56]. Taxa in

which full-sized males are unknown are puzzling. Why

should males abandon the option of growing to substantial

size in the absence of females? Dwarfing probably occurs

on a continuum from taxa in which tiny males grow on

female leaves to taxa in which males facultatively produce

antheridia at smaller size in the presence of females.

Males that exhibit facultative dwarfing appear to modify

their growth in response to contact with females. Males of

Leucobryum juniperoideum develop as dwarfs on female

leaves. But when a dwarf male is detached from a female

leaf and grown in culture, he grows to large size [57,58].

Full-sized males produce much larger antheridia, and pre-

sumably many more sperm, than dwarf males [58].

Sporophyte-bearing cushions of this species always contain

males, either as large leafy stems or epiphytic dwarfs,

whereas cushions without sporophytes lack males [57].

Female colonies with sporophytes are rare in many species

with dwarf males [57–59]. However, once the first male

arrives and sires the first generation of sporophytes, spores

from these capsules can fall onto maternal leaves and produce

a second generation of dwarf males that are both offspring

and mates of their mum [60,61]. The second generation of spor-

ophytes can then produce a third generation of dwarf

males who mate with a female who is simultaneously both

their mum and their grandmum. (‘Mum’ is used to refer to

haploid egg-producers to distinguish them from diploid

‘mothers’ [62].)

A study of 1399 shoots of Homalothecium lutescens found

465 fertile female shoots and two full-sized males, with

dwarf males on eight female shoots. Several dwarf males

were present on five of these shoots, suggesting local recruit-

ment [63]. In other populations of this species, most female

shoots carried dwarf males, sometimes numbering in the

hundreds [64]. Genotypes of dwarf males showed that

many were closely related to the female shoot on which

they grew, probably her offspring, but some appeared to

have been dispersed from other colonies [65]. Genotypes of

sporophytes revealed that multiple paternity was common

on a single shoot with some sporophytes homozygous

for every one of 68 single-nucleotide polymorphisms [66].

Multiple generations of haploid males mating with a

longer-lived haploid mum is an extreme form of inbreeding,

but complete homozygosity at so many loci is somewhat

puzzling, because heterozygosity should be maintained at

sex-linked loci if sex is genotypically determined.
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(c) Intra-tetrad mating
A few dioecious liverworts disperse spores as persistent mei-

otic tetrads [1]. Each tetrad contains two male spores and

two female spores. Thus, male and female gametophytic ‘sib-

lings’ disperse together and potentially mate with each other.

Such matings have unusual genetic properties that maintain

substantial heterozygosity. Sex chromosomes and homologous

centromeres segregate at meiosis I and are reunited by intrate-

trad mating. Therefore, this form of mating maintains

heterozygosity at all centromeres and all loci for which there

is no crossover between the locus and its centromere [67,68].

Heterozygosity is lost in 50% matings at loci for which there

is exactly one crossover between the locus and its centromere

but in less than 50% of matings for two or more crossovers [69].

The dispersal of two male and two female spores to a single

site is seemingly inefficient. Would it not be better to break each

tetrad into two dyads, each a male with a female, and disperse

spores to two sites rather than one? There may be developmen-

tal reasons why bisexual dyads are difficult to evolve. Sex

chromosomes are believed to segregate at anaphase I, with

spores formed after simultaneous cytokinesis at the end of

telophase II. The formation of bisexual dyads would require

mechanisms to ensure that non-sister spores are dispersed

together. Persistent dyads have been reported in three species

of Haplomitrium [70–73]. There are two interpretations of the

sexuality of these dyads. The first interprets the two spores as

of opposite sex, ensuring the joint dispersal of the sexes and

allowing intra-dyad matings [70,74]. The second interprets

the two spores of a dyad as same-sexed products of meiosis

II [73]. This question will be resolved empirically, but the first

interpretation makes more adaptive sense.

Males are much smaller than females in some liverworts that

disperse spores in persistent tetrads [75]. Growth of male thalli

of Riccia curtisii and Sphaerocarpos stipitatus initially keeps pace

with growth of female thalli but falls behind once males start

to produce antheridia [75,76]. Slow growth of males once arche-

gonia are fertilized, whether these are conventional dwarf males

or males dispersed in persistent tetrads, may be a form of

paternal care in which males limit their own growth to increase

the resources females can invest in the male’s sporophytic off-

spring [54]. Within a male–female couple, jointly procreated

spores are a common good, but asexual propagules are private

goods. Cooperation between the sexes will be most stable when

neither sex has other reproductive options including asexual

propagation. Gemmae are generally absent in species that dis-

perse spores as persistent dyads or tetrads (for the sole

reported exception, see [77]). I have found no reports of dwarf

males producing gemmae, although gemmae are reported

from females of species with dwarf males [60,78].

(d) Monoecious mating
The existence of abundant sporophytes on bisexual gameto-

phytes, compared with rare sporophytes on unisexual

female gametophytes, has been interpreted as evidence for

frequent gametophytic selfing in monoecious bryophytes

[1,25,59,79]. However, one would expect sporophytes to be

more common on bisexual gametophytes, even in the absence

of gametophytic selfing, because all possible combinations

of bisexual gametophytes can produce sporophytes on each

and every gametophyte whereas sporophytes never occur

on male gametophytes nor on female gametophytes in

single-sex groups.
Recombination is often considered more common in dioe-

cious than monoecious bryophytes, because spores produced

by gametophytic selfing are genetically uniform, whereas

spores produced by outcrossing are genetically variable.

However, one must compare the number of outcrossed sporo-

phytes, not the proportion of outcrossed sporophytes, to

determine the relative rates of recombination, because mon-

oecious taxa produce more sporophytes than dioecious taxa.

When two unisexual gametophytes occur together, and are

of opposite sex, then sporophytes produced on the female

gametophyte are always outcrossed. By contrast, when two

bisexual gametophyte occur together, self-sperm compete

with other-sperm to fertilize archegonia on both gameto-

phytes. Clearly, the general belief that recombination is less

common in monoecious taxa depends on an implicit assump-

tion that self-sperm outcompete other-sperm when both are

present, perhaps because archegonia are closer to self-antheri-

dia than other-antheridia, because antheridia and archegonia

develop in synchrony or because archegonia and self-sperm

exchange a ‘secret handshake’ unknown to other-sperm.

The twofold dilution of maternal alleles in outcrossed

sporophytes compared with gametophytically selfed sporo-

phytes suggests natural selection should favour fertilization

by self-sperm over other-sperm. An advantage of self-sperm

has been demonstrated in at least one monoecious moss.

When pairs of Funaria hygrometrica gametophytes were

grown together, 98% of capsules were produced by gameto-

phytic selfing [80]. Direct evidence of frequent selfing by

bisexual gametophytes comes from findings of genetic identity

between gametophytes and associated sporophytes. Different

clumps of monoecious Weissia controversa had different num-

bers of supernumerary chromosomes, but numbers were

uniform within clumps. All sporophytes had karyotypes con-

sistent with mating within a clonal clump [79,81]. Allozyme

and microsatellite studies in monoecious mosses find that

most sporophytes are homozygous, consistent with frequent

gametophytic selfing [82–84], although one study of monoe-

cious liverworts found that 5% of sporophytes of Pellia
borealis and 25% of sporophytes of Pellia epiphylla were sired

by mating between gametophytes [85,86].
4. Comparisons with ferns
Fern gametophytes are sessile haploid organisms that

reproduce sexually by short-range fertilization, with diploid

progeny (sporophytes) developing at the site of fertilization.

All these features are shared with bryophytes. Despite these

similarities, somewhat more than half of all bryophytes, but

no homosporous ferns, are dioecious [3]. Universal monoecy

of homosporous ferns is probably related to vegetative compe-

tition among sporophytes, rather than among gametophytes,

and increased genetic loads relative to bryophytes.

Clonal propagation of bryophytes is restricted to the haploid

phase. An archegoniate clone may produce multiple mature

sporophytes, in multiple years, at multiple sites. Each sporo-

phyte is short-lived, without asexual reproduction, remains

attached to and nutritionally dependent upon its mum, and

occupies an area much smaller than the range of sperm move-

ment. Sporophytes do not directly compete with each other

for space. By contrast, clonal propagation of ferns occurs in

the diploid phase and sporophytes compete for space. Fern

sporophytes become nutritionally independent from and
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typically outlive, their mum. A mature sporophyte can vegeta-

tively dominate an area much greater than the range of sperm

movement. Although many young sporophytes may be con-

ceived within a local mating population, only one occupies

that space at reproductive maturity. Bryophytic gametophytes

achieve high fitness by producing many sporophytes, whereas

pteridophytic gametophytes achieve high fitness by producing

a single successful sporophyte.

Gametophytes of many bryophytes are perennial, pro-

duce asexual propagules, and can therefore afford to delay

sexual reproduction until propitious circumstances. By con-

trast, most fern gametophytes are short-lived and lack

asexual propagules. Rapid production of a fern sporophyte

is at a premium. Bisexuality gives a fern gametophyte two

options—via an egg and a sperm—of contributing genes to

the sporophyte that triumphs in competition within its local

neighbourhood [87]. These considerations may explain why

dioecious mating systems, with genetically determined sex,

are unknown among homosporous ferns. Gametophytes of

some fern species precociously produce antheridia in the

presence of larger archegoniate gametophytes, but the exist-

ence of local populations of unisexual gametophytes is a

labile response of potentially bisexual gametophytes [88–90].
(a) Inbreeding depression
Many monoecious bryophytes produce most sporophytes by

gametophytic selfing. Although gametophytes of some ferns

regularly self-fertilize [91], this is the exception rather than the

rule. Some ferns have mixed mating systems in which out-

crossed sporophytes are provisioned preferentially but selfed

sporophytes mature in the absence of outcrossed sporophytes

[92], whereas others appear to be almost exclusive outcrossers

[93]. A bisexual gametophyte doubles its genetic representation

in a sporophyte by fertilizing its own archegonia. Why should

fern gametophytes forgo this immediate benefit of haploid self-

ing? A possible answer is that relatively small reductions of

vigour greatly diminish an inbred sporophyte’s prospects in

winner-takes-all competition with neighbouring sporophytes,

thus outweighing the twofold cost of outbreeding.

Inbreeding depression may be less of a problem for bryo-

phytes than for ferns. Mutations that impair gametophyte

functions, including functions shared by gametophytes and

sporophytes, will be eliminated by within-clone selection

during gametophytic growth. Moreover, mutations with

diploid-specific effects will be immediately exposed to selection

in homozygous sporophytes produced by gametophytic selfing

[94]. For these reasons, the genetic load among spores of mon-

oecious bryophytes is expected to be low. Similar arguments

apply to dioecious bryophytes, except that recessive mutations

with sporophyte-specific effects are shielded from selection in

heterozygous sporophytes. The limited data currently available

find little evidence of inbreeding depression in monoecious

bryophytes but hints of inbreeding depression in some, but

not all, dioecious bryophytes [49,80,95].

Most ferns undergo prolonged vegetative growth as

diploid sporophytes. Recessive mutations that impair haploid

functions will accumulate during prolonged clonal propa-

gation of sporophytes. Such mutations are shielded from

natural selection until spore production, when gametophytic

growth remains an effective filter for mutations with essential

functions in the haploid phase. Most mature fern sporophytes

are the products of gametophytic outcrossing rather than
selfing. Therefore, recessive sporophyte-specific mutations

are not immediately exposed to selection [96]. As a conse-

quence, outbreeding ferns may accumulate substantial

genetic loads for loci with sporophyte-specific effects [97].

Inbreeding depression has been inferred from smaller

size of inbred moss sporophytes [49,80] and from failures of

isolated fern gametophytes to produce sporophytes by gam-

etophytic selfing [98–100]. Because mature moss sporophytes

and early fern embryos obtain much of their nutrition from

their mum, these measures of ‘inbreeding depression’ reflect

an interaction between the genotypes of haploid mums and

diploid offspring. Early losses of inbred sporophytes could

be interpreted as adaptive behaviour of maternal gameto-

phytes if resources can be reallocated from lower-quality to

higher-quality sporophytes [87]. Fern gametophytes that fail

to mature sporophytes in one experiment may subsequently

produce a viable homozygous sporophyte. This phenomenon

has been called ‘leaky lethality’ [101], but could also be inter-

preted as strategic behaviour by maternal gametophytes who

first wait for an outcrossed sporophyte but then switch to

default provisioning of a selfed sporophyte [87,92].
(b) Asexual comparisons
Many ferns possess apogamous life cycles in which gameto-

phytes develop from unreduced spores (diplospory) then bud

sporophytes directly from these gametophytes (apogamy)

[102]. Such life histories are unknown in bryophytes, although

apogamy can be induced experimentally [103]. Thus, there

seems to be no fundamental developmental constraint that pre-

vents the evolution of apogamic life histories in bryophytes;

rather, bryophytes achieve the same ‘asexual’ ends by different

means. Bisexual gametophytes of bryophytes frequently

produce homozygous sporophytes by gametophytic selfing

which then produce haploid spores genetically identical to

the haploid parent. By contrast, heterozygous sporophytes of

apogamic ferns produce heterozygous spores and heterozy-

gous gametophytes, all replicating the same diploid or

higher-ploid genotype. The prevalence of apogamic life his-

tories among ferns may be a consequence of the accumulation

of genetic load in sexual ancestors that habitually outcrossed.

Apogamous ferns are common in xeric habitats.

Apogamy has been proposed to be advantageous when

free water is rare because it eliminates the need for sperm

to fertilize archegonia [104,105]. Free water, however, is

occasionally present in most habitats occupied by fern gam-

etophytes, and some monoecious mosses of xeric habitats

regularly produce sporophytes despite the absence of

apogamy. Apogamy may nevertheless provide advantages

when opportunities for fertilization are rare, and local popu-

lations of fern gametophytes compete to produce a single

mature sporophyte, because apogamy gives a gametophyte

a head start over sexual competitors that must wait for

fertilization in the race to produce this sporophyte.

Many dioecious bryophytes propagate by clonal growth of

gametophytes, with sexual reproduction rare or absent. In some

taxa, sporophytes are unknown. Most ferns, by contrast, propa-

gate as perennial sporophytes and possess gametophytes that

lack means of asexual reproduction. Gametophytic production

of gemmae, however, has evolved in three families of pre-

dominantly epiphytic ferns [106]. Some of these ferns exist as

self-perpetuating populations of gametophytes with rare,

short-lived sporophytes. In some cases, sexual reproduction
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has been lost altogether and populations are maintained

exclusively by clonal proliferation of gametophytes [107–109].

5. Conclusion
Distinctive features of bryophyte sexuality are consequences of

clonal proliferation of sessile haploid organisms that mate

within small local neighbourhoods. Sexual reproduction is

rare in many species with unisexual gametophytes, because

mixed-sex populations are rare. Such populations must rely on

asexual forms of reproduction for their short-term persistence.
Gametophytic selfing is common in species with bisexual

gametophytes and is functionally equivalent to ‘asexual’ repro-

duction. In such species, spore production can serve a dual

function of ‘clonal’ spread via spores produced by gametophy-

tic selfing and genetic recombination in spores produced by

gametophytic outcrossing. Gametophytic selfing is rarer in

ferns, probably because of higher genetic loads secondary to

clonal proliferation as diploid sporophytes.
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